// Inspired by github.com/SaveTheRbtz/generic-sync-map-go but technically // written from scratch with Go 1.23's sync.Map. // Copyright 2024 Runxi Yu (porting it to generics) // Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package cmap provides a generic Map safe for concurrent use. package cmap import ( "sync" "sync/atomic" "unsafe" ) // Map[K comparable, V comparable] is like a Go map[K]V but is safe for concurrent use // by multiple goroutines without additional locking or coordination. Loads, // stores, and deletes run in amortized constant time. // // The Map type is optimized for two common use cases: (1) when the entry for a given // key is only ever written once but read many times, as in caches that only grow, // or (2) when multiple goroutines read, write, and overwrite entries for disjoint // sets of keys. In these two cases, use of a Map may significantly reduce lock // contention compared to a Go map paired with a separate [Mutex] or [RWMutex]. // // The zero Map is empty and ready for use. A Map must not be copied after first use. // // In the terminology of [the Go memory model], Map arranges that a write operation // “synchronizes before” any read operation that observes the effect of the write, where // read and write operations are defined as follows. // [Map.Load], [Map.LoadAndDelete], [Map.LoadOrStore], [Map.Swap], [Map.CompareAndSwap], // and [Map.CompareAndDelete] are read operations; // [Map.Delete], [Map.LoadAndDelete], [Map.Store], and [Map.Swap] are write operations; // [Map.LoadOrStore] is a write operation when it returns loaded set to false; // [Map.CompareAndSwap] is a write operation when it returns swapped set to true; // and [Map.CompareAndDelete] is a write operation when it returns deleted set to true. // // [the Go memory model]: https://go.dev/ref/mem type Map[K comparable, V comparable] struct { mu sync.Mutex // read contains the portion of the map's contents that are safe for // concurrent access (with or without mu held). // // The read field itself is always safe to load, but must only be stored with // mu held. // // Entries stored in read may be updated concurrently without mu, but updating // a previously-expunged entry requires that the entry be copied to the dirty // map and unexpunged with mu held. read atomic.Pointer[readOnly[K, V]] // dirty contains the portion of the map's contents that require mu to be // held. To ensure that the dirty map can be promoted to the read map quickly, // it also includes all of the non-expunged entries in the read map. // // Expunged entries are not stored in the dirty map. An expunged entry in the // clean map must be unexpunged and added to the dirty map before a new value // can be stored to it. // // If the dirty map is nil, the next write to the map will initialize it by // making a shallow copy of the clean map, omitting stale entries. dirty map[K]*entry[V] // misses counts the number of loads since the read map was last updated that // needed to lock mu to determine whether the key was present. // // Once enough misses have occurred to cover the cost of copying the dirty // map, the dirty map will be promoted to the read map (in the unamended // state) and the next store to the map will make a new dirty copy. misses int } // readOnly is an immutable struct stored atomically in the Map.read field. type readOnly[K comparable, V comparable] struct { m map[K]*entry[V] amended bool // true if the dirty map contains some key not in m. } // expunged is an arbitrary pointer that marks entries which have been deleted // from the dirty map. var expunged = unsafe.Pointer(new(any)) // An entry is a slot in the map corresponding to a particular key. type entry[V comparable] struct { // p points to the value stored for the entry. // // If p == nil, the entry has been deleted, and either m.dirty == nil or // m.dirty[key] is e. // // If p == expunged, the entry has been deleted, m.dirty != nil, and the entry // is missing from m.dirty. // // Otherwise, the entry is valid and recorded in m.read.m[key] and, if m.dirty // != nil, in m.dirty[key]. // // An entry can be deleted by atomic replacement with nil: when m.dirty is // next created, it will atomically replace nil with expunged and leave // m.dirty[key] unset. // // An entry's associated value can be updated by atomic replacement, provided // p != expunged. If p == expunged, an entry's associated value can be updated // only after first setting m.dirty[key] = e so that lookups using the dirty // map find the entry. p unsafe.Pointer } func newEntry[V comparable](i V) *entry[V] { return &entry[V]{p: unsafe.Pointer(&i)} } func (m *Map[K, V]) loadReadOnly() readOnly[K, V] { if p := m.read.Load(); p != nil { return *p } return readOnly[K, V]{} } // Load returns the value stored in the map for a key, or nil if no // value is present. // The ok result indicates whether value was found in the map. func (m *Map[K, V]) Load(key K) (value V, ok bool) { read := m.loadReadOnly() e, ok := read.m[key] if !ok && read.amended { m.mu.Lock() // Avoid reporting a spurious miss if m.dirty got promoted while we were // blocked on m.mu. (If further loads of the same key will not miss, it's // not worth copying the dirty map for this key.) read = m.loadReadOnly() e, ok = read.m[key] if !ok && read.amended { e, ok = m.dirty[key] // Regardless of whether the entry was present, record a miss: this key // will take the slow path until the dirty map is promoted to the read // map. m.missLocked() } m.mu.Unlock() } if !ok { return *new(V), false } return e.load() } func (e *entry[V]) load() (value V, ok bool) { p := atomic.LoadPointer(&e.p) if p == nil || p == expunged { return value, false } return *(*V)(p), true } // Store sets the value for a key. func (m *Map[K, V]) Store(key K, value V) { _, _ = m.Swap(key, value) } // Clear deletes all the entries, resulting in an empty Map. func (m *Map[K, V]) Clear() { read := m.loadReadOnly() if len(read.m) == 0 && !read.amended { // Avoid allocating a new readOnly when the map is already clear. return } m.mu.Lock() defer m.mu.Unlock() read = m.loadReadOnly() if len(read.m) > 0 || read.amended { m.read.Store(&readOnly[K, V]{}) } clear(m.dirty) // Don't immediately promote the newly-cleared dirty map on the next operation. m.misses = 0 } // tryCompareAndSwap compare the entry with the given old value and swaps // it with a new value if the entry is equal to the old value, and the entry // has not been expunged. // // If the entry is expunged, tryCompareAndSwap returns false and leaves // the entry unchanged. func (e *entry[V]) tryCompareAndSwap(old V, new V) bool { p := atomic.LoadPointer(&e.p) if p == nil || p == expunged || *(*V)(p) != old { // XXX return false } // Copy the pointer after the first load to make this method more amenable // to escape analysis: if the comparison fails from the start, we shouldn't // bother heap-allocating a pointer to store. nc := new for { if atomic.CompareAndSwapPointer(&e.p, p, unsafe.Pointer(&nc)) { return true } p = atomic.LoadPointer(&e.p) if p == nil || p == expunged || *(*V)(p) != old { return false } } } // unexpungeLocked ensures that the entry is not marked as expunged. // // If the entry was previously expunged, it must be added to the dirty map // before m.mu is unlocked. func (e *entry[V]) unexpungeLocked() (wasExpunged bool) { return atomic.CompareAndSwapPointer(&e.p, expunged, nil) } // swapLocked unconditionally swaps a value into the entry. // // The entry must be known not to be expunged. func (e *entry[V]) swapLocked(i *V) *V { return (*V)(atomic.SwapPointer(&e.p, unsafe.Pointer(i))) } // LoadOrStore returns the existing value for the key if present. // Otherwise, it stores and returns the given value. // The loaded result is true if the value was loaded, false if stored. func (m *Map[K, V]) LoadOrStore(key K, value V) (actual V, loaded bool) { // Avoid locking if it's a clean hit. read := m.loadReadOnly() if e, ok := read.m[key]; ok { actual, loaded, ok := e.tryLoadOrStore(value) if ok { return actual, loaded } } m.mu.Lock() read = m.loadReadOnly() if e, ok := read.m[key]; ok { if e.unexpungeLocked() { m.dirty[key] = e } actual, loaded, _ = e.tryLoadOrStore(value) } else if e, ok := m.dirty[key]; ok { actual, loaded, _ = e.tryLoadOrStore(value) m.missLocked() } else { if !read.amended { // We're adding the first new key to the dirty map. // Make sure it is allocated and mark the read-only map as incomplete. m.dirtyLocked() m.read.Store(&readOnly[K, V]{m: read.m, amended: true}) } m.dirty[key] = newEntry(value) actual, loaded = value, false } m.mu.Unlock() return actual, loaded } // tryLoadOrStore atomically loads or stores a value if the entry is not // expunged. // // If the entry is expunged, tryLoadOrStore leaves the entry unchanged and // returns with ok==false. func (e *entry[V]) tryLoadOrStore(i V) (actual V, loaded, ok bool) { p := atomic.LoadPointer(&e.p) if p == expunged { return actual, false, false } if p != nil { return *(*V)(p), true, true } // Copy the pointer after the first load to make this method more amenable // to escape analysis: if we hit the "load" path or the entry is expunged, we // shouldn't bother heap-allocating. ic := i for { if atomic.CompareAndSwapPointer(&e.p, nil, unsafe.Pointer(&ic)) { return i, false, true } p = atomic.LoadPointer(&e.p) if p == expunged { return actual, false, false } if p != nil { return *(*V)(p), true, true } } } // LoadAndDelete deletes the value for a key, returning the previous value if any. // The loaded result reports whether the key was present. func (m *Map[K, V]) LoadAndDelete(key K) (value V, loaded bool) { read := m.loadReadOnly() e, ok := read.m[key] if !ok && read.amended { m.mu.Lock() read = m.loadReadOnly() e, ok = read.m[key] if !ok && read.amended { e, ok = m.dirty[key] delete(m.dirty, key) // Regardless of whether the entry was present, record a miss: this key // will take the slow path until the dirty map is promoted to the read // map. m.missLocked() } m.mu.Unlock() } if ok { return e.delete() } return value, false } // Delete deletes the value for a key. func (m *Map[K, V]) Delete(key K) { m.LoadAndDelete(key) } func (e *entry[V]) delete() (value V, ok bool) { for { p := atomic.LoadPointer(&e.p) if p == nil || p == expunged { return value, false } if atomic.CompareAndSwapPointer(&e.p, p, nil) { return *(*V)(p), true } } } // trySwap swaps a value if the entry has not been expunged. // // If the entry is expunged, trySwap returns false and leaves the entry // unchanged. func (e *entry[V]) trySwap(i *V) (*V, bool) { for { p := atomic.LoadPointer(&e.p) if p == expunged { return nil, false } if atomic.CompareAndSwapPointer(&e.p, p, unsafe.Pointer(i)) { return (*V)(p), true } } } // Swap swaps the value for a key and returns the previous value if any. // The loaded result reports whether the key was present. func (m *Map[K, V]) Swap(key K, value V) (previous V, loaded bool) { read := m.loadReadOnly() if e, ok := read.m[key]; ok { if v, ok := e.trySwap(&value); ok { if v == nil { return previous, false } return *v, true } } m.mu.Lock() read = m.loadReadOnly() if e, ok := read.m[key]; ok { if e.unexpungeLocked() { // The entry was previously expunged, which implies that there is a // non-nil dirty map and this entry is not in it. m.dirty[key] = e } if v := e.swapLocked(&value); v != nil { loaded = true previous = *v } } else if e, ok := m.dirty[key]; ok { if v := e.swapLocked(&value); v != nil { loaded = true previous = *v } } else { if !read.amended { // We're adding the first new key to the dirty map. // Make sure it is allocated and mark the read-only map as incomplete. m.dirtyLocked() m.read.Store(&readOnly[K, V]{m: read.m, amended: true}) } m.dirty[key] = newEntry(value) } m.mu.Unlock() return previous, loaded } // CompareAndSwap swaps the old and new values for key // if the value stored in the map is equal to old. // The old value must be of a comparable type. func (m *Map[K, V]) CompareAndSwap(key K, old, new V) (swapped bool) { read := m.loadReadOnly() if e, ok := read.m[key]; ok { return e.tryCompareAndSwap(old, new) } else if !read.amended { return false // No existing value for key. } m.mu.Lock() defer m.mu.Unlock() read = m.loadReadOnly() swapped = false if e, ok := read.m[key]; ok { swapped = e.tryCompareAndSwap(old, new) } else if e, ok := m.dirty[key]; ok { swapped = e.tryCompareAndSwap(old, new) // We needed to lock mu in order to load the entry for key, // and the operation didn't change the set of keys in the map // (so it would be made more efficient by promoting the dirty // map to read-only). // Count it as a miss so that we will eventually switch to the // more efficient steady state. m.missLocked() } return swapped } // CompareAndDelete deletes the entry for key if its value is equal to old. // The old value must be of a comparable type. // // If there is no current value for key in the map, CompareAndDelete // returns false (even if the old value is a nil pointer). func (m *Map[K, V]) CompareAndDelete(key K, old V) (deleted bool) { read := m.loadReadOnly() e, ok := read.m[key] if !ok && read.amended { m.mu.Lock() read = m.loadReadOnly() e, ok = read.m[key] if !ok && read.amended { e, ok = m.dirty[key] // Don't delete key from m.dirty: we still need to do the “compare” part // of the operation. The entry will eventually be expunged when the // dirty map is promoted to the read map. // // Regardless of whether the entry was present, record a miss: this key // will take the slow path until the dirty map is promoted to the read // map. m.missLocked() } m.mu.Unlock() } for ok { p := atomic.LoadPointer(&e.p) if p == nil || p == expunged || *(*V)(p) != old { return false } if atomic.CompareAndSwapPointer(&e.p, p, nil) { return true } } return false } // Range calls f sequentially for each key and value present in the map. // If f returns false, range stops the iteration. // // Range does not necessarily correspond to any consistent snapshot of the Map's // contents: no key will be visited more than once, but if the value for any key // is stored or deleted concurrently (including by f), Range may reflect any // mapping for that key from any point during the Range call. Range does not // block other methods on the receiver; even f itself may call any method on m. // // Range may be O(N) with the number of elements in the map even if f returns // false after a constant number of calls. func (m *Map[K, V]) Range(f func(key K, value V) bool) { // We need to be able to iterate over all of the keys that were already // present at the start of the call to Range. // If read.amended is false, then read.m satisfies that property without // requiring us to hold m.mu for a long time. read := m.loadReadOnly() if read.amended { // m.dirty contains keys not in read.m. Fortunately, Range is already O(N) // (assuming the caller does not break out early), so a call to Range // amortizes an entire copy of the map: we can promote the dirty copy // immediately! m.mu.Lock() read = m.loadReadOnly() if read.amended { read = readOnly[K, V]{m: m.dirty} copyRead := read m.read.Store(©Read) m.dirty = nil m.misses = 0 } m.mu.Unlock() } for k, e := range read.m { v, ok := e.load() if !ok { continue } if !f(k, v) { break } } } func (m *Map[K, V]) missLocked() { m.misses++ if m.misses < len(m.dirty) { return } m.read.Store(&readOnly[K, V]{m: m.dirty}) m.dirty = nil m.misses = 0 } func (m *Map[K, V]) dirtyLocked() { if m.dirty != nil { return } read := m.loadReadOnly() m.dirty = make(map[K]*entry[V], len(read.m)) for k, e := range read.m { if !e.tryExpungeLocked() { m.dirty[k] = e } } } func (e *entry[V]) tryExpungeLocked() (isExpunged bool) { p := atomic.LoadPointer(&e.p) for p == nil { if atomic.CompareAndSwapPointer(&e.p, nil, expunged) { return true } p = atomic.LoadPointer(&e.p) } return p == expunged }