aboutsummaryrefslogtreecommitdiff
path: root/static/solver.c
blob: d76d0207f1cb8966dae05b3f8406734911a687f7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

// This is a reference implementation of the proof of work solver in C.
// For security reasons, it is recommended that you read and understand the
// entire program first if you actually want to run it.
//
// You need to have OpenSSL, and link with -lcrypto

#include <openssl/evp.h>
#include <openssl/bio.h>
#include <openssl/buffer.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>

bool validate_bit_zeros(const unsigned char *bs, unsigned long n)
{
	unsigned long q = n / CHAR_BIT;
	unsigned char r = n % CHAR_BIT;

	for (unsigned long i = 0; i < q; i++) {
		if (bs[i] != 0)
			return false;
	}

	if (r > 0) {
		unsigned char mask =
		    (unsigned char)(UCHAR_MAX << (CHAR_BIT - r));
		if (bs[q] & mask)
			return false;
	}

	return true;
}

int main(int argc, char **argv)
{
	if (argc < 3) {
		fprintf(stderr, "usage: %s <base64_data> <difficulty>\n",
			argv[0]);
		return 1;
	}

	size_t base64_data_len = strlen(argv[1]);
	unsigned char *base64_data = malloc(base64_data_len);
	if (!base64_data) {
		perror("malloc");
		return 1;
	}
	memcpy(base64_data, argv[1], base64_data_len);

	char *endptr = NULL;
	errno = 0;
	unsigned long difficulty = strtoul(argv[2], &endptr, 10);
	if ((difficulty == ULONG_MAX && errno == ERANGE) || *endptr != '\0'
	    || difficulty > 256) {
		fprintf(stderr, "invalid difficulty value\n");
		free(base64_data);
		return 1;
	}

	BIO *b64 = BIO_new(BIO_f_base64());
	BIO *bmem = BIO_new_mem_buf(base64_data, (int)base64_data_len);
	if (!b64 || !bmem) {
		fprintf(stderr, "BIO_new/BIO_new_mem_buf\n");
		free(base64_data);
		return 1;
	}

	BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
	b64 = BIO_push(b64, bmem);

	size_t decoded_cap = base64_data_len;
	unsigned char *decoded = malloc(decoded_cap);
	if (!decoded) {
		perror("malloc");
		BIO_free_all(b64);
		free(base64_data);
		return 1;
	}

	int decoded_len = BIO_read(b64, decoded, (int)decoded_cap);
	if (decoded_len < 0) {
		fprintf(stderr, "BIO_read\n");
		BIO_free_all(b64);
		free(base64_data);
		free(decoded);
		return 1;
	}
	BIO_free_all(b64);
	free(base64_data);

	EVP_MD_CTX *mdctx = EVP_MD_CTX_new();
	if (!mdctx) {
		fprintf(stderr, "EVP_MD_CTX_new\n");
		free(decoded);
		return 1;
	}

	size_t len = EVP_MD_size(EVP_sha256());
	unsigned char digest[len];
	size_t next = 0;

	while (1) {
		if (EVP_DigestInit_ex(mdctx, EVP_sha256(), NULL) != 1) {
			fprintf(stderr, "EVP_DigestInit_ex\n");
			EVP_MD_CTX_free(mdctx);
			free(decoded);
			return 1;
		}
		if (EVP_DigestUpdate(mdctx, decoded, decoded_len) != 1) {
			fprintf(stderr, "EVP_DigestUpdate(data)\n");
			EVP_MD_CTX_free(mdctx);
			free(decoded);
			return 1;
		}
		if (EVP_DigestUpdate(mdctx, &next, sizeof(next)) != 1) {
			fprintf(stderr, "EVP_DigestUpdate(next)\n");
			EVP_MD_CTX_free(mdctx);
			free(decoded);
			return 1;
		}
		if (EVP_DigestFinal_ex(mdctx, digest, NULL) != 1) {
			fprintf(stderr, "EVP_DigestFinal_ex\n");
			EVP_MD_CTX_free(mdctx);
			free(decoded);
			return 1;
		}
		if (validate_bit_zeros(digest, difficulty)) {
			break;
		}
		next++;
		if (!next) {
			fprintf(stderr, "unsigned integer overflow\n");
			EVP_MD_CTX_free(mdctx);
			free(decoded);
			return 1;
		}
	}
	EVP_MD_CTX_free(mdctx);
	free(decoded);

	BIO *b64_out = BIO_new(BIO_f_base64());
	BIO *bmem_out = BIO_new(BIO_s_mem());
	if (!b64_out || !bmem_out) {
		fprintf(stderr, "BIO_new\n");
		if (b64_out)
			BIO_free_all(b64_out);
		if (bmem_out)
			BIO_free(bmem_out);
		return 1;
	}
	BIO_set_flags(b64_out, BIO_FLAGS_BASE64_NO_NL);
	b64_out = BIO_push(b64_out, bmem_out);

	if (BIO_write(b64_out, &next, sizeof(next)) < 0) {
		fprintf(stderr, "BIO_write\n");
		BIO_free_all(b64_out);
		return 1;
	}
	if (BIO_flush(b64_out) < 1) {
		fprintf(stderr, "BIO_flush\n");
		BIO_free_all(b64_out);
		return 1;
	}

	BUF_MEM *bptr = NULL;
	BIO_get_mem_ptr(b64_out, &bptr);
	if (!bptr || !bptr->data) {
		fprintf(stderr, "BIO_get_mem_ptr\n");
		BIO_free_all(b64_out);
		return 1;
	}

	write(STDOUT_FILENO, bptr->data, bptr->length);
	write(STDOUT_FILENO, "\n", 1);

	BIO_free_all(b64_out);
	return 0;
}